The importance of Quality Assurance for a sustainable recycling of biowaste
Workshop

• Quality assurance and markets of compost and digestate products in the Flemish Region
 – Vlaco, Wim Vanden Auweele

• Compost story
 – IOK Afvalbeheer, Jonathan De Witte

• Digestate story
 – AM-Power, Henk Dedeyne

• Interactive session: your opinion and discussion
Total in 2017: 3,546,500 tonnes, of which waste: 2,292,000 tonnes
Quality Assurance: the Vlaco QAS

- Legal obligation
- Compost and digestate products
- Clear end-of-waste criteria included
- Input / process / output / reasoned use
- Sampling and analysis under recognition
- Benchmarked with ECN-QAS
- Extra quality: label
Professional treatment: Quality Assurance

✓ ‘Good practice’
✓ Based on self control
 by treatment plant
 • Internal quality system
 • Protocol of acceptance for input
 • Process control
 • Quality control of the end-products
 • Reasoned use of the end-products
✓ Independant control
 by VLACO npo on the self control of the company
 • Sample taking
 • Analysis
 • Audits + admin. controls

• Agricultural value, proces value
• Input requirements (impurities, Vlarema)
• No dilution
• Registration and traceability
• Risk Assessment through sampling + analysis protocol (recognised labs)
• Screening of suppliers of biowaste

• Optimising of the process
• Minimal process time, tracing
• Critical process factors
• Monitoring and steering
• Recognised labs (external control)

• Product information document
• Composition + application

 VLACO-certificate = end-of-waste
Interactive map: certified products
Reasoned application

Groencompost

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
<th>Einheid</th>
<th>Interpreteatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>droge stof en vochtsomstandigheden</td>
<td>52.4</td>
<td>% op vet</td>
<td>laag te nat</td>
</tr>
<tr>
<td>rotomorfologische eigenschappen</td>
<td>20.3</td>
<td>% op vet</td>
<td>zeer hoog</td>
</tr>
<tr>
<td>organische stof (op droge zt)</td>
<td>28.7</td>
<td>% op vet</td>
<td>normal</td>
</tr>
<tr>
<td>pH</td>
<td>6.6</td>
<td></td>
<td>6.4-6.6</td>
</tr>
<tr>
<td>totaal kalk (CaO)</td>
<td>0.120</td>
<td>% op vet</td>
<td>laag</td>
</tr>
<tr>
<td>totaal kalk (CaO)</td>
<td>0.160</td>
<td>% op vet</td>
<td>voldoende</td>
</tr>
<tr>
<td>materiaal dat niet omgezet is</td>
<td>1.5</td>
<td>%</td>
<td>laag</td>
</tr>
</tbody>
</table>

Overkoopstabilisatie en uitblijvende methylen

<table>
<thead>
<tr>
<th>%</th>
<th>ligation</th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>detergentie</td>
<td>28.10</td>
<td>26.3</td>
</tr>
<tr>
<td>waterzouten</td>
<td>6.95</td>
<td>0.5</td>
</tr>
<tr>
<td>waterflee</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>waterkalk (K2O)</td>
<td>0.59</td>
<td>0.2</td>
</tr>
<tr>
<td>totaal waterkalk (CaO)</td>
<td>5.30</td>
<td>0.5</td>
</tr>
<tr>
<td>totaal methylen (CaO)</td>
<td>0.40</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Werk
- Winkel 1:5 m² tot 15-20 cm diep in de grond.
- Winkel 1:1 m³ tot 20% compost en 80% grond.
- Gazon: Werk 4 m² tot 15-20 cm diep in de grond.
- Steun in het nagenoeg 0.5 m³ groencompost over het bedekkende gazon.
IOK Afvalbeheer

Intermunicipality Region ‘Kempen’

Waste management for 520.000 inhabitants (29 cities - rural area)

Activities
Prevention – direct communication to inhabitants
Separate waste door-to-door collection (> 120 trucks)
Recycling stations for separate waste collection (18)
Mechanical-biological treatment of residual waste (120.000 t)
Biological treatment of bio-waste (65.000 t)
Collection of bio waste (1)

Door-to-door collection ‘kitchen and garden waste from households’

- 30,000 t/y (56 kg/inh)

Recycling Stations collection of ‘organic waste’: garden waste of households

- 35,000 t/yr

Municipalities (own waste)
Treatment – ‘Energy Conversion Park’

Biowaste

Digestion combined with composting facility

Materials

Biomethane
5 GWh/yr

Electricity and Heat
2 x 6 GWh/yr
Materials - overview

- Compost (23,600 t/yr)
 - Biowaste compost
 - Regular (< 16 mm) 14,000 t/yr
 - Fine (< 5mm) 2,600 t/yr
 - Green compost 7,000 t/yr
- Potting Soil 150 t/yr
- Woody materials (1,700 t/yr)
 - Mulch material 1,300 t/yr
 - Biomass (energy) 400 t/yr
Materials - distribution

30% directly to households – mostly biowaste compost (own distribution)
15% to municipalities (bulk)
55% to companies (bulk)
Compost in Flanders

In 2017, in Flanders the production of quality assured compost was:

- 325.000 tonnes of green compost
- 108.000 tonnes of biowaste compost (kitchen, fruit and garden waste compost)
Digestate story
AM-Power

- Located in Pittem, Belgium
- Treatment capacity = 180,000 t
- Largest biogas plant in Belgium
- Operational since 2011

<table>
<thead>
<tr>
<th>Plant</th>
<th>Feedstock</th>
<th>Current technologies</th>
<th>Investments</th>
<th>Products (full scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Power Pittem, Belgium</td>
<td>Manure, Food waste (180,000 ton)</td>
<td>Digester, Nutrient recovery by reverse osmosis (RO) (TRL 5)</td>
<td>Innovative combination of RO and a vaporizer to produce mineral N,K concentrates (TRL 7)</td>
<td>Biogas, N+K-concentrates</td>
</tr>
</tbody>
</table>
Impression of AM-Power
Problem statement

• 250 million tons organic biological waste (OBA) in the EU
• Loss of P en N to the water
• But also loss of energy and valuable nutrients
From waste product to high quality end-product.

But first **GREEN POWER** and **GREEN HEAT**

- **Energy:**
 - Installed capacity = 9 MW
 - Production capacity = 7.5 MW

- **Nutrients:** focus on valorisation of nutrients of digestate
DIGISTATE end-products

Current Process AM-Power

- Raw Digestate
- Liquid Fraction
- Mineral Concentrate
- Solid Fraction
- Dried Digistate
Recycling of nutrients.... not a simple process

• Many possibilities ...

• A lot of trial & error

• Great investment of time and money
BUT our goal is to recycle even more nutrients!

HOW?

• AM-Power is a demo plant in a large European H2020 project called “SYSTEMIC”
• In this way, it is possible for us to continue investing in even more nutrient recuperation.
• Therefore we currently place a large vacuum evaporator
NEW Process AM-Power
Interactive session with audience
Vlaco’s carbon footprint-tool & use in communication - WRF - 26.02.2019
Go to www.menti.com and use the code 57 30 92

1. Grab your phone
2. Go to www.menti.com
3. Enter the code 57 30 92 and vote!
To be covered

- CO$_2$-tool Vlaco (12’)
- 2 x questions (12’)
- Wrap-up (6’)

- Goal: inspire & retriev
1. Vlaco’s CO$_2$-tool (WHAT?)

- What is (surplus) value of composting/compost?
 - a.o. net avoided emissions, nutrients, carbon stored, biodiversity, soil, water,…: CO$_2$ and/or €

- What is
1. Vlaco’s CO$_2$-tool (WHAT?)

- How to fully capture economic/ecologic value of our members activities?
 - In one parameter?
 - In product label?
 - In tool?
 - Climate change!

- °2017 start building Vlaco’s carbon footprint tool
 - Excel-based
 - CO$_2$-equivalents (cfr LCA’s)
 - scientific literature/documentated
1. Vlaco’s CO$_2$-tool (WHAT?)

- **TOOL:**
 - Footprint: **positive** & **negative** CO$_2$-eq of process & product
 - **Per tonne** of **applied** compost or digestate (cradle to cradle)
 - Carbon Footprint Product (**CFP**)

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>No digestion (BAT) ~ prior ow policies</td>
<td>Energy crops</td>
</tr>
<tr>
<td>Emissions (incl energy use) of transports and production</td>
<td>Storage manure</td>
</tr>
<tr>
<td>Production and transports of minerale NPK</td>
<td>C-sequestration (CO$_2$-eq.)</td>
</tr>
<tr>
<td>Renewable energy (digestion: to biogas in CHP or to biomethane)</td>
<td></td>
</tr>
</tbody>
</table>
1. Vlaco’s CO₂-tool (RESULTS)

Some examples (1/3)

<table>
<thead>
<tr>
<th>Type compost:</th>
<th>Groencompost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoeveelheid (ton)</td>
<td>100</td>
</tr>
<tr>
<td>Toepassing</td>
<td>Potgrondproductie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>vermeden uitstoot CO₂-equivalenten van niet (correct) composteren (-)</th>
<th>-371,8 kg CO₂eq/ton compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>uitstoot CO₂-eq. door aanvoer oba, productie en afvoer van compost (+)</td>
<td>163,9 kg CO₂eq/ton compost</td>
</tr>
<tr>
<td>2</td>
<td>vermeden uitstoot CO₂-eq. vanuit productie, transport en mineralisatie van veen (-)</td>
<td>-577,0 kg CO₂eq/ton compost</td>
</tr>
<tr>
<td>3</td>
<td>vermeden uitstoot CO₂-eq. vanuit productie en transport mineral NPK (-)</td>
<td>-8,7 kg CO₂eq/ton compost</td>
</tr>
<tr>
<td>4</td>
<td>C-sekwestratie (CO₂-eq.) in bodem op lange termijn (-)</td>
<td>-41,0 kg CO₂eq/ton compost</td>
</tr>
<tr>
<td>5</td>
<td>vermeden uitstoot CO₂-eq. van fossiele brandstoffen equivalent aan hernieuwbare energie uit zeefoverloop-verbranding of gft-voorvergisting en eventuele opwerking tot & gebruik van biomethaan (-)</td>
<td>-20,3 kg CO₂eq/ton compost</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALE VOETAFDRUKVERMINDERING COMPOST

<table>
<thead>
<tr>
<th></th>
<th>-855,0 kg CO₂eq/ton compost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-85496,7 kg CO₂eq totaal uitgespaard</td>
</tr>
</tbody>
</table>

Koms overeen met

<table>
<thead>
<tr>
<th>de gemiddelde uitstoot/km van ...</th>
<th>534 354 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>de gemiddelde uitstoot van een personenwagen voor een afstand van ...</td>
<td>534 354 km</td>
</tr>
<tr>
<td>de gemiddelde uitstoot/jaar van ...</td>
<td>35,6 personenwagens</td>
</tr>
</tbody>
</table>
1. Vlaco’s CO$_2$-tool (RESULTS)

- Some examples (1/3):
 - Green compost (100 T) for ° potting soil
 - Vlaco CO$_2$-tool:
 - **footprint reduction** (vs reference) of 855 kg CO$_2$eq/ton compost or 85 ton CO$_2$eq for 100 tonnes
 - Emissions by avg family car: 534.354 km
1. Vlaco’s CO$_2$-tool (RESULTS)

- Some examples (2/3):
 - Vfg-compost (30 T) for public green services:
 - Vlaco CO$_2$-tool:
 ✓ **footprint reduction** (vs reference) of 1.259kg CO$_2$eq/tonne vfg compost or 38 tonnes CO$_2$eq for 30 tonnes
 ✓ Emissions by avg family car: 236.196 km
1. Vlaco’s CO$_2$-tool (RESULTS)

• Some examples (3/3):
 – Solid fraction digestate (15 T) for farming:
 – Vlaco CO$_2$-tool:
 ✓ footprint reduction (vs reference) of 110kg CO$_2$eq/tonne digestate or 1,6 tonnes CO$_2$eq for 15 tonnes solid fraction digestate
 ✓ Emissions by avg family car: 10.303 km
Go to www.menti.com and use the code 928305

1. Grab your phone
2. Go to www.menti.com
3. Enter the code 928305 and vote!
1. Vlaco’s CO₂-tool (VALIDATION)

- Validated by OWS and Vinçotte (2017-2018)
- Excel + ‘backgrounddocument’
- OWS:
 - ✓ Rationale/structure
 - ✓ Proper functioning
 - ✓ Conformity ISO14067
 - methodology,
 - review background-documents (chapter requirements),
 - system boundaries,
 - precision, completeness, representativeness, consistency, reproducibility, sources, sound data,
 - emission factors,
 - arithmetical correctness
1. Vlaco’s CO$_2$-tool (VALIDATION)

- **Vinçotte:**
 - ✓ Advice cfr ISO14021 (Self-declared environmental claims for products, **incl advice on communication issues**)
 - ✓ Conformity ISO14067

- Background-document & validations need to be public (on demand)
Go to www.menti.com and use the code 432461

1. Grab your phone

2. Go to www.menti.com

3. Enter the code 432461 and vote!
2. WRAP-UP: Vlaco’s communications

✓ Clear mission statement:
 ➢ ”to make producers, consumers, governments en knowledge centers more aware of the ecological impact of the organic waste treatment sector and its products.”

✓ Website: maximum transparency + logo
✓ Workshops for Vlaco-members
✓ °public webbased CO$_2$-app
✓ ° (social) media plan
✓ Vlaco-publications (2) and media contacts
✓ Direct communication
✓ Elaborate link Covenant of Mayors (cities’ climate plans) through organisations such as Futureproofed
2. WRAP-UP: Vlaco’s future communications

✓ Accompanying product documents/packaging
✓ Target more specific groups
 ✓ farmers
 ✓ Cities & regions (climate plans)
✓ Using to promote biomethane
✓
2. WRAP-UP: CONCLUSIONS?

• Major challenges in setting up & using carbon footprint tool (CFP):
 – What is goal ? (evolution)
 – Research & cooperate
 – Validate – open source
 – Manage tool’s complexity & promote tool’s simplicity (webtool or App)
 – Crucial importance of communication
 » Choose level(s) and target group(s):…..
 » Choose a set of communication channels:…..
 » Make a media & social media plan: ….
 » Continuous process
Thanks for participating!

christophe.boogaerts@vlaco.be
+32 (0)15/451.371
www.vlaco.be